
OSO work sample—MAX

Lars Wirzenius

2021-05-29 22:26

Contents
1 Work sample for OSO 1

1.1 Re-statement of problem . 2
1.2 Client request: start computation 2
1.3 Server response: request computation 2
1.4 Client request: computation result 2
1.5 Server response: result . 3

2 Example 3

3 Assumptions 4

4 Remarks 5

5 Acceptance criteria 5
5.1 Find max of a list of one . 5
5.2 Find max of a list of two . 5
5.3 Find max of a list of three . 5

6 What I did 6
6.1 The client . 6
6.2 The server . 6
6.3 The testing . 7

1 Work sample for OSO
This is the work sample for my job application for a developer position for OSO.

This document explains the work I’ve done and verifies that the code I wrote
works together with the client.

1

1.1 Re-statement of problem
To clarify the problem for myself, I am re-stating it. This will also work to make
sure I’ve understood it in the intended way when we discuss this.

The goal is to write a server, which communicates with a client using messages
over HTTP. The client has a list of integers, and the asks the server to figure
out what is the largest integer in the list. The crux is that the client does not
send the server the whole list, but only small messages and the server needs to,
effectively, ask the client to do pairwise comparisons of integers.

The possible messages sent by the client and the server are listed below, as
examples. Communication is started by client by a “start computation” message.
Server responds with a suitable message, which causes the client to make a new
HTTP request with the response to the server’s message. This continues until
the server sends a message with result it has come up with.

1.2 Client request: start computation
Client starts the protocol by asking the server to compute something about a list
of numbers the client holds. It tells the server what computation is requested,
and how long the list is.

The supported computations are, for now, compute_max (find index of the largest
integer) and compute_min (similar, but smallest integer).

{
"type": "compute_max",
"length": 2

}

1.3 Server response: request computation
Server ask the client to report the result of a less-than comparison operation
between arbitrary list items.

{
"type": "compare",
"left": 0,
"right": 1,
"request_id": 7

}

1.4 Client request: computation result
The client reports the result of a comparison. The server should respond by
another comparison request, or the result of the computation.

{
"type": "comp_result",

2

"answer": true,
"request_id": 7

}

1.5 Server response: result
{

"type": "done",
"result": 2

}

2 Example
In this example, assume the client has the following list:

5, 6, 7, 5

Note that the list is not in order and numbers aren’t unique. The sequence
diagram below shows the messages the go between the client and the server.

For simplicity, request ids are not shown.

3

client

client

server

server

compute_max, length=4

client tells server there
are 4 integes and that the
server should figure out
the largest one

compare(0,1)
server wants client to
compare integers at
indexes 0 and 1

comp_result, answer=true

client reports that
the integer at index
0 is less than the one
at index 1

compare(1,2) max so far is at index 1;
server asks is list[1] < list[2]

comp_result, answer=trueclient reports yes

compare(2,3) max so far is at index 2;
server asks is list[2] < list[3]

comp_result, answer=falseclient reports no

done, answer=2
server knows it has compared
all list items and that max is
at index 2

This is very simple computation. Given the server can’t assume the list is
ordered, it has to compare all list elements to the largest one it has found so far.

3 Assumptions
• The server will abort if the client doesn’t use the request id from the

latest server message. That is, the client and server do not need to handle
multiple outstanding comparison requests.

• The server does not need to handle the case of the client having an empty
list of integers, because there messages as given do no indicate a way to
signal a result of “no result”.

• The list in the client doesn’t change during the computation: items stay
in the same order, and are not added, deleted, or changed.

• The client responds truthfully.

4

4 Remarks
• Given the list the client has is unordered, O(n) comparisons is the best

we can do. If the client can make some guarantees, faster algorithms are
possible. If list can be ordered, a binary search would be optimal.

5 Acceptance criteria
5.1 Find max of a list of one
This scenario verifies that the server finds the maximum integer in a list of one.

given server
when I run max-client.py 1
then answer is 1

5.2 Find max of a list of two
These scenarios verify that the server finds the maximum integer in a list of two.
There is a separate scenario for every possible list of two elements.

given server
when I run max-client.py 5 5
then answer is 5
when I run max-client.py 5 6
then answer is 6
when I run max-client.py 6 5
then answer is 6

5.3 Find max of a list of three
These scenarios verify that the server finds the maximum integer in a list of two.
There is a separate scenario for every possible list of two elements.

given server
when I run max-client.py 5 5 5
then answer is 5
when I run max-client.py 5 5 6
then answer is 6
when I run max-client.py 5 6 5
then answer is 6
when I run max-client.py 6 5 5
then answer is 6
when I run max-client.py 5 6 7
then answer is 7
when I run max-client.py 5 7 6
then answer is 7

5

when I run max-client.py 6 5 7
then answer is 7
when I run max-client.py 6 7 5
then answer is 7
when I run max-client.py 7 5 6
then answer is 7
when I run max-client.py 7 6 5
then answer is 7

6 What I did
6.1 The client
I modified slightly the max-client.py file:

• it is now an executable Python script, and formatted with Black
• the user can invoke it with a list of numbers, and tell it whether to ask

the server to find the min or the max number

I made these changes so that I could use it when verifying the acceptance criteria
defined in this document. The original code tested only two cases, which I found
to be inadequate for my purposes.

The Python code is not entirely to current Python best practices. For example,
it doesn’t use type annotations. I have not started using those yet: at work I’ve
only used old versions of Python that don’t support type annotations, and in
my free time, I don’t write anything of significant size in Python anymore.

6.2 The server
The server is in server.py, and is a Python program using bottle.py. I chose
Python, because for something small and simple like this it’s easy. I chose
bottle.py because it’s familiar for me.

I could have chosen Rust, and probably the warp crate for the HTTP API, but
it would have required much more implementation work, and probably more
than is warranted for this exercise.

The code is a little simplistic in that it doesn’t do much in terms of error
handling, logging, or such. At the same time it’s overly complicated, because I
wanted to make sure it allows for more than just the “max” algorithm. “min”
is implemented, and the same structure should be usable for, say, finding the
second largest element. More interesting algorithms would require changes to
the messages: if, for example, one wanted the server to find out if the list is
ordered, the “done” message would need to be able to express the result.

6

6.3 The testing
I have used the Subplot1 program to verify that my server works. Subplot
documents the acceptance criteria and how they are verified. That is this
document. The section Acceptance criteria2 documents the acceptance criteria
using scenarios consisting of given/when/then steps.

Subplot produces two typeset documents (one in HTML, one in PDF), and a
self-standing test program, which can be run to verify the system under test
fulfills the acceptance criteria. To avoid requiring you to have Subplot installed,
the test program is included in the git repository as test.py. You can run it
like this:

$ python3 test.py --log test.log
srcdir /home/liw/pers/oso/work-sample
datadir /tmp/tmpcom39rm7
scenario: Find max of a list of one

step: given server
step: when I run max-client.py 1
step: then answer is 1
cleanup: given server

scenario: Find max of a list of two
step: given server
step: when I run max-client.py 5 5
step: then answer is 5
step: when I run max-client.py 5 6
step: then answer is 6
step: when I run max-client.py 6 5
step: then answer is 6
cleanup: given server

scenario: Find max of a list of three
step: given server
step: when I run max-client.py 5 5 5
step: then answer is 5
step: when I run max-client.py 5 5 6
step: then answer is 6
step: when I run max-client.py 5 6 5
step: then answer is 6
step: when I run max-client.py 6 5 5
step: then answer is 6
step: when I run max-client.py 5 6 7
step: then answer is 7
step: when I run max-client.py 5 7 6
step: then answer is 7
step: when I run max-client.py 6 5 7

1https://subplot.liw.fi/
2#acceptance

7

https://subplot.liw.fi/

step: then answer is 7
step: when I run max-client.py 6 7 5
step: then answer is 7
step: when I run max-client.py 7 5 6
step: then answer is 7
step: when I run max-client.py 7 6 5
step: then answer is 7
cleanup: given server

OK, all scenarios finished successfully
$

I hope that is satisfactory.

8

	Work sample for OSO
	Re-statement of problem
	Client request: start computation
	Server response: request computation
	Client request: computation result
	Server response: result

	Example
	Assumptions
	Remarks
	Acceptance criteria
	Find max of a list of one
	Find max of a list of two
	Find max of a list of three

	What I did
	The client
	The server
	The testing

