
Thoughts on future WMF architecture

Lars Wirzenius, Release Enginering

work in progress, first draft being written

Abstract

The release engineering team is working on upgrading the WMF CI system to
be more modern. The existing CI system needs to be replaced, since it relies
on a customized version of Zuul, which is long obsolete by upstream. The
current upstream version of Zuul is entirely different, so whatever happens, we
need to make significant, user-visible changes, and are taking advantage of the
opportunity to re-think the whole CI system from scratch to make it server our
various stakeholders better. This isn’t change for the sake of change, this is
opportunistic redesign.

This document describes what we in the release engineering team are thinking
for the new CI system, and why. This is part of the second phase of evaluation
of new CI tooling. The first phase winnowed down the potential options from
several dozen to three. The second phase looks as the options in more detail.

This document is in the middle of being written. Nothing is finalized yet.
Anything might change.

Feedback on this document is most welcome. Direct feedback to its author or
the RelEng team in general.

Contents

1 Introduction 2

2 Requirements 3
Very hard requirements . 3
Hard requirements . 4
Softer requirements . 7
Would be nice . 7

3 Important use cases 9
Normal change to an individual component 9
Interdependent changes . 9
Security embargoed change . 10

4 Design of specific aspects 11
Log storage . 11
Artifact storage . 11
Credentials management and access control 12
Interdependent changes to multiple components 13

5 Architecture: The WMF development ecosystem 14

6 The (default?) pipeline 16

7 Architecture: internals 19

8 Acceptance criteria 20

1

Chapter 1

Introduction

CI WG plans replacement of its current WMF CI system with one of Argo,
GitLab CI, Zuul v3. These were selected in the first phase of the CI WG.

We aim to do “continuous deployment”, not only “continous integration” or
“continuous delivery”. The goal is to deploy changes to production as often and
as quickly as possible, without compromising on the safety and security of the
production environment.

This document goes into more detail of how the new CI system should work,
without (yet) discussing which replacement is chosen. A meta architecture if
you wish.

It is assumed as of the writing of this document that future CI will build on and
deploy to containers orchestrated by Kubernetes.

An important change is that we aim to change things so that as much as possible,
all software deployments are to containers orchestrated by Kubernetes

2

Chapter 2

Requirements

This chapter lists the requirements we have for the CI system and which we
design the system to fulfil.

Each requirement is given a semi-mnemonic unique identifier, so it can be referred
to easily.

The goal is to make requirements be as clear and atomic as possible, so that the
implementation can be more easily evaluated against the requirement: it’s better
to split a big, complicated requirement into smaller ones so they can be considered
separately. Requirements can be hierarchical: The original requirement can be a
parent to all its parts.

FIXME: We may want to have a way to track which requirements are being
fulfilled, or tested by automated acceptance tests. Need to add something for
this, maybe a spreadsheet.

These requirements were originally written up in the WG wiki pages and have
been changed a little compared to that (as of the 21 March 2019 version).

Very hard requirements
• These are non-negotiable requirement that must all be fulfilled by a our

future CI system.

• (SELFHOSTABLE) Must be hostable by the Foundation. It’s not
acceptable for WMF to rely on an outside service for this.

– (FREESOFTWARE) Must be free software / open source. “Open
core” like GitLab is be good enough, as long as we only need the
parts that provide software freedom.

3

https://www.mediawiki.org/wiki/Wikimedia_Release_Engineering_Team/CI_Futures_WG/Requirements

This is partly due to the SELFHOSTABLE requirement, but also
because a WMF value is to prefer open source.

• (GITSUPPORT) Must support git. We’re not switching version control
systems for CI.

• (UNDERSTANDABLE) Must be understandable without too much
effort to our developers so that they can use CI/CD productively.

• (SELFSERVE) Must support self-serve CI, meaning we don’t block
people if they want CI for a new repo. Due to PROTECTPRODUC-
TION, there will probably to be some human approval requirement for
new projects, but as much as possible, people should be allowed to do their
work without having to ask permission.

– (SELFSERVE2) Should allow the developers to define or declare
at least parts of the pipeline jobs in the repository: what commands
to run for building, testing, etc.

Hard requirements
• These are not absolute requirements, and can be negotiated, but only to a

minor degree.

• (FAST) Must be fast enough that it isn’t perceived as a bottleneck by
developers. We will need a metric for this.

– (SHORTCYCLETIME) Must enable us to have a short cycle time
(from idea to running in production). CI is not the only thing that
affects this, but it is an important factor. We probably need a metric
for this.

• (TRANSPARENT) Must make its status and what-is-going-on visible
so that its operation can be monitored and so that our developers can
check the status of their builds themselves. Also the overall status of CI,
for example, so they can see if their build is blocked by waiting on others.

• (FEEDBACK) Must provide feedback to the developers as early as
possible for the various stages of a build, especially the early stages (“can
get source from git”, “can build”, “can run unit tests”, etc.).

The goal is to give feedback as soon as possible, especially in the case of
the build failing.

– (FEEDBACK2) Must support providing feedback via Gerrit, IRC,
and Phabricator, at the very least. These are our current main
feedback channels.

• (SECURE) Must be secure enough that we can open it to community
developers to use without too much supervision.

4

• (MAINTAINED) Must be maintained and supported upstream. The CI
system should not require substantial development from the Foundation.
Some customization is expected to be necessary.

• (MANYREPOS) Must be able to handle the number of repositories,
projects, builds, and deployments that we have, and will have in the
foreseeable future.

• (METRICS) Must enable us to instrument it to get metrics for CI use
and effectiveness as we need. Things like cycle times, build times, build
failures, etc.

• (GERRIT) Must work with Gerrit as well as other self-hostable code-
review systems (e.g., GitLab), if we decide to move to that later. This
means, code review happens on Gerrit, after building and automated tests
pass, and positive code review triggers deployment to production.

• (NOREBUILDING) Must promote (copy) Docker images and other
build artifacts from “testing” to “staging” to “production”, rather than
rebuilding them, since rebuilding takes time and can fail. Once a binary,
Docker image, or other build artifact has been built, exactly that artifact
should be tested, and eventually deployed to production.

• (LOCALTESTS) Must allow developer to replicate locally the tests that
CI runs. This is necessary to allow lower friction in development, as well
as to aid debugging. For example, if CI builds and tests using Docker
container, a developer should be able to download the same image and run
the tests locally.

• (AUTOMATEDEPLOYMENT) Must allow deployment to be fully
automated.

– (AUTOMATEDSELFDEPLOYMENT) Must be automatically
deployable by us or SRE, onto a fresh server.

• (HSCALABLE)Must be horizontally scalable: we need to be able to add
more hardware easily to get more capacity. This is particularly important
for build workers, which are the mostly likely bottleneck. Also, probably
environments used for testing.

• (PROGLANGS) Must be able to support all programming languages
we currently support or are likely to support in the future. These include,
at least, shell, Python, Ruby, Java, PHP, and Go. Some languages may be
needed in several versions.

• (OUTPUTLINKS) Must support HTTP linking to build results for
easier reference and discussion. This way a build log, or a build artifact,
can be reference using a simple HTTP (or HTTPS) link.

• (ARTIFACTARCHIVE) Should allow archiving build logs, executables,
Docker images, and other build artifacts for a long period.

5

– (RETENTION) The retention period should be configurable based
on artifact type, and whether the build ended up being deployed to
production.

• (CONFIGVC)Must keep configuration in version control. This is needed
so that we can track changes over time.

• (GATING)Must support gating / pre-merge testing. FIXME: This needs
to be explained.

• (PERIODICBUILDS) Must support periodic / scheduled testing. This
is needed so that we can test that changes to the environment haven’t
broken anything. An example would be changes to Debian, upon which
we base our container images.

• (POSTMERGETESTS) Must support post-merge testing. FIXME:
This needs to be explained.

• (CIMERGES) Must support tooling to do the merging, instead of devel-
opers. We don’t want developer merging by hand and pushing the merges.
CI should test changes and merge only if tests pass, so that the branches
for main lines of development are always releaseble.

• (TESTVC)Must support storing tests in version control. This is probably
best achieved by having tests be stored in the same git repository where
the code is.

• (BUILDDEPS) Must have some way to declare dependent repositories /
software needed for testing. FIXME: This needs to be explained.

• (TESTSERVICES) Must support services for tests — i.e., some PH-
PUnit tests require MySQL. These are most important for integration
tests. Proper unit tests do not depend on any external stuff. However,
integration tests may well need MediaWiki, some specific extensions, and
backing services, such as databases, “oid” services, and possibly more. CI
needs to be able to provide such environments for testing.

• (OTHERGITORTICKETING) Must allow changing git repository,
code review, and ticketing systems from Gerrit and Phabricator. We are
not currently looking at switching away from Gerrit and Phabricator, but
the future CI solution should not lock us into specific code review or
ticketing solutions.

• (PROTECTPRODUCTION) Must protect production by detecting
problems before they’re deployed, and must in general support a sensible
CI/CD pipeline. This is necessary both for the safety and security of our
production systems, a higher speed of development, and higher productivity.
The protection brings developer confidence, which tends to bring speed
and productivity.

6

– (ENFORCETESTS) Must allow Release Engineering team to en-
force tests on top of what a self-serving developer specifies, to allow
us to set minimal technical standards.

• (CACHEDEPS) Must support dependency caching – we have castor,
maybe we could do better? Maybe some CI systems have this figured out?
This means, for example, caching npm and PyPI packages so that every
build doesn’t need to download them directly from the centralised package
repositories. This is needed for speed.

Softer requirements
• These requirements are even more easily negotiated.

• (HA) Should be highly available - can restart any component without
disrupting service.

• (LIVELOG) Should have live console output of build.

• (MAXBUILDTIME) Should have build timeouts so that a build may
fail if it takes too long. Among other reasons, this is useful to automatically
work around builds that get “stuck” indefinitely.

• (CLEANWORKSPACE) Should provide a clean workspace for each
test run - either a clean VM or container.

• (RATELIMIT) Should have rate limiting - one user/project can not take
over most/all resources.

• (CHECKSIG) Should support validation and creation of GPG/PGP-
signed git commits

• (SECRETS) Should support secure storage of credentials / secrets.

Would be nice
• These are so soft they aren’t even requirements, and more wish list items.

• (LIMITBOILERPLATE) Would be nice for test abstractions to limit
boiler-plate, i.e., all of our services are tested roughly the same way without
having to copy instructions to every repository.

• (PRIORITIZEJOBS) Would be nice to prioritize jobs.

– Use case: if there is a queue of jobs, there should be some mechanism
of jumping that queue for jobs that have a higher priority.

– We currently have a Gating queue that is a higher priority than
periodic jobs that calculate Code Coverage.

• (ISOLATION) Would be nice to support isolation / sandboxing.

7

– Jobs should be isolated from one another.

– Jobs should be able to install apt-packages without affecting depen-
dencies of other jobs.

• (CONTROLAFFINITY) Would be nice to have configurable job re-
quirements/affinity.

– Be able to schedule a job only on nodes that have at least X available
disk space/ram/cpu/whatever OR try to schedule on nodes where a
current build of this job isn’t already running.

• (POSTMERGEBISECT) Would be nice to post-merge git-bisect to
find patch that caused a particular problem with a Selenium test.

• (DEPLOYWHEREVER) Would be nice to have a mechanism for de-
ployment to staging, production, pypi, packagist, toollabs. We could do
with a way to deploy to any of several possible environments, for various
use cases, such as bug repoduction, manual exploratory testing, capacity
testing, and production. FIXME: what do pypi and packagist do in the
list?

• (MATRIXBUILDS) Would be nice to have efficient matrix builds.

– E.g., we currently run phpunit tests and browser tests for the Cartesian
product of {PHP7 PHP7.1 PHP7.2 HHVM} x {MySQL, SQLite,
PostgreSQL} x {Composer, MediaWiki vendor}, but we perform
setup/git clone for all of those tests. Doing that in a space and time
efficient way would be good.

• (MOBILE) Would be nice to support building and testing mobile appli-
cations (at minimum for iOS and Android).

• (EMBARGO)Would be nice to be able to run for secret/security patches.
This means CI should be able to build and deploy changes that can’t be
made public yet, for security embargo reasons.

8

Chapter 3

Important use cases

These are some of the important use cases for the CI system, and how we plan
CI to implement them.

Normal change to an individual component
• a developer pushes a change to one program that runs in production

• the change is indepent of other changes and no other component depends
on the chage

• e.g., bug fix, not a feature change

• the governing principle is that with commit stage and acceptance stage
passing, plus a positive code review, the changes can be deploed to to
production in most cases

• developer pushes change, this trigger commit and acceptance stages, which
pass, which triggers code review requests to be sent to reviewers

• reviewers vote +2, which triggers a deployment to production

• this is the simplest possible use case for CI

Interdependent changes
• changes to two or more components that must all be applied at once or

not at all, e.g., to mediawiki core and an extension

• in this scenario the change to MediaWiki core and the change to an
extension may depend on each other, so that if either is deployed without
the other, the system as a whole breaks; thus, either both changes get
deployed, or neither

9

• Lars’s opinion: this seems like a bad way of managing development. It
seems better to be careful with such changes so that they can be disabled
behind a feature flag in the configuration, or by autodetection of the other
component, so that if only one component has been changed, it can stillbe
deployed. Only when both components have been changed in production
is the feature flag enabled, and the new feature works.

Security embargoed change
• change can’t be public until it’s deployed or manually made public

• this is typically part of “responsible disclosure”

• the change will be made public, but CI should be able to use it even
before it’s public, so that when it’s time, there’s no need to wait for CI to
build/test the change and it can just be merged and deployed

• this means some builds and builds artifacts need to be locked away from
public

10

Chapter 4

Design of specific aspects

Log storage
• We want to capture the build log or “console output” (stdout, stderr) of the

build and store it. This is an invaluable tool for developers to understand
what happens in a build, and especially why it failed.

• Ideally, the build log is formatted in a way that’s easy for humans to read.

• It’d also be nice if the build log can be easily processed programmatically,
to extract information from it automatically.

• We may want to store build logs for extended periods of time so that we can
analyze them later. By storing them in a de-duplicating and compressing
manner, the way backup software like Borg does, the storage requirements
can be kept reasonable.

Artifact storage
• Artifacts are all the files created during the build process that may be

needed for automated testing or deployment to production or any other
environment: executable binaries, minimized Javascript, automatically
generated documentation from source code (javadoc).

• We basically need to store arbitrary blobs for some time. We need to
retrieve the blobs for deployment, and possibly other reasons.

• We may want to store artifacts that get deployed to production for a
longer time than other artifacts so that we can keep a history what was in
production at any recent-ish point in time.

11

• We will want to trace back from each artifact which git repository and
commit it came from.

• We can de-duplicate artifacts (a la backup programs) to save on space.
Even so, we will want to automatically expire artifacts on some flexible
schedule to keep storage needs in control.

• We need to decide when we can make these artifacts publically accessible.

• Artifact storage must be secure, as everything that gets deployed to
production goes via it.

• There are some artifact storage systems we can use.

Credentials management and access control
• Credentials and other secrets are used to allow access to servers, services,

and files. They are often highly security sensitive data. The CI system
needs to protect them, but allow controlled use of them.

• Example: a CI job needs to deploy a Docker image with a tested and
reviewed change as a container orchestrated by Kubernetes. For this, it
needs to authenticate itself to the Kubernetes API. This is typically done
by a username/password combination. How will the future CI system
handle this?

• Example: for tests, and in production, a MediaWiki container needs
access to a MariaDB database, and MW needs to authenticate itself to the
database. MW gets the necessary credentials for this from its configuration,
which CI will install during deployment. The configuration will be specific
for what the container is being used: if it’s for testing a change, the
configuration only allows access to a test database, but for production it
provides access to the production database.

• FIXME: This is unclear as yet, the text below is some incoherent prelimi-
nary rambling by Lars which needs review and fixing.

• Builds are done in isolated containers. These containers have no creden-
tials. Build artifacts are extracted from the containers and stored in an
artifact storage system by the CI system, and this is done in a controlled
environment, where only vetted code is run, not code from the repository
being tested.

• Deployments happen in controlled environments, with access to the creden-
tials needed for deployment. The deployment retrieve artifacts from the
artifact storage system. The deployments are to containers, and the de-
ployed continers don’t have any credentials, unless CI has been configured
to install them, in which case CI installs the credentials for the intended
use of the container.

12

• Tests run against software deployed to containers, and those containers
only have access to the backing services needed for the test.

• The CI system needs a way to store the credentials that can only be
accessed by CI itself, when it’s deploying a container (Kubernetes API
access) or configuring the container (installing credentials for the intended
use of container).

This might be, for example, a set of files deployed to the CI host where
container deployment or configuration runs, with access control provided
by Unix permissions. Not sure if this is sufficiently secure.

Interdependent changes to multiple components
FIXME

13

Chapter 5

Architecture: The WMF
development ecosystem

developer

Gerrit
code review

CI system

env for automated tests env for manual testing production

Figure 5.1: The WMF development ecosystem, roughly

• the above figure is simplistic, but gives the general idea

14

– developer pushes a change to Gerrit
– CI builds and tests change (commit stage)
– CI deploys to a test environment, runs tests against that (acceptance

test stage)
– CI can deploy to an environment dedicated for manual testing
– after successful code review, CI merges changes to the master branch,

run all automated tests again, and deploys to the production environ-
ment

• the commit and acceptance stages are triggered as soon as developer pushes
changes to be reviewed; human reviews won’t be requested until the two
stages pass, as there’s no point in spending human attention on things
that are not going to be candidates for deployment to production; they
may be re-run after code review accepts the changes, to make sure nothing
unforeseen has changed while review took place

• other stages may run in parallel with code review, but if they fail they may
nullify candidacy? for example, stages for manual and capacity testing,
and security test/review; depending on the change and the component in
question, some or all of these may be necessary

15

Chapter 6

The (default?) pipeline

• CI will provide a default pipeline for all projects

– divided into several stages

– mandatory stages: commit, acceptance; other stages may be added
to other projects as needed

– the goal is that if commit + acceptance stages pass, the project has a
candidate that can be deployed to production, unless the project is
such that it needs (say) manual testing or other human decision for
the production deployment decision

– if commit or acceptance stage fails, there is not production candidate

• commit stage

– builds all the artifacts that will be used by later stages

– runs unit tests

– other tests, possibly integration tests

– code health checks

– the commit stage is expected to be fast, aiming at less than five
minutes, so that we can expect developers to wait for it to pass
successfully

– the commands to build (compile) or run automated tests are stored
in the repository, either explicity, or by indicating the type of build
needed; for example, the repository may specify “make” as the com-
mand to run, or it may specify that it’s a Go project, and CI would
know how to build a Go project; in the latter case we can change the
commands to build a Go project by changing CI only, without having
to change each git repository with a Go program

16

developer

Commit stage

Acceptance stage Artifact store

A test environment Production environment

Figure 6.1: The default pipeline

17

– only the declarative style is possible for building Docker images, as
we want control over how that is done

– CI may enforce specific additional commands to run, to build or test
further things; this can be used by RelEng to enforce specific code
health checks, for example, or to enable (or disable) debug symbols
in all builds

– all tests run in an isolated build tree, and may not use anything
outside the tree, including databases or other backing services

– any build dependencies must be specified explicitly; for example,
which version of Go should be installed in the build environment, or
if a project build-depends on another project, which artifacts it needs
installed from the other project; explicit is more work, but results in
fewer problems due to broken heuristics

• acceptance tests

– deploys artifacts from commit stage to containers in special test
environments, runs tests against deployed artifacts

– possibly run slow tests from the build tree as well, if they don’t fit
into the commit stage’s time budget

– this stage can be slower than the commit stage, but should still pass
in, say, an hour, instead of taking days

• capacity tests

– these are tests that benchmark the system as deployed into an en-
vironment that’s sufficiently production-like also as far as hardware
resources are concerned

• manual (exploratory) tests

– testers will have dedicated environments to which they can trigger
deployment of specific builds, and in which they can, for example,
test that specific bugs are fixed

– this can also be used to demonstrate upcoming features that are not
yet enabled in production

18

Chapter 7

Architecture: internals

FIXME This needs to be written, but it needs a lot of thinking first

19

Chapter 8

Acceptance criteria

• FIXME: This chapter will sketch some automated acceptance tests using
a Gherkin/Cucumber-like pseudo code language. Or in some other way
that can be automatically executed.

20

	Introduction
	Requirements
	Very hard requirements
	Hard requirements
	Softer requirements
	Would be nice

	Important use cases
	Normal change to an individual component
	Interdependent changes
	Security embargoed change

	Design of specific aspects
	Log storage
	Artifact storage
	Credentials management and access control
	Interdependent changes to multiple components

	Architecture: The WMF development ecosystem
	The (default?) pipeline
	Architecture: internals
	Acceptance criteria

